news 2023
« BACK
Chemistry - Physics - 28.03.2023
Health - Chemistry - 22.03.2023
Physics - Chemistry - 14.03.2023
Life Sciences - Chemistry - 09.03.2023
Chemistry - Physics - 09.02.2023
Chemistry - Physics - 06.02.2023
Physics - Chemistry - 02.02.2023
Physics - Chemistry - 02.02.2023
Astronomy / Space Science - Chemistry - 24.01.2023
Physics - Chemistry - 24.01.2023
Chemistry - Innovation - 20.01.2023
Chemistry
Results 1 - 11 of 11.
Tiny materials have huge solar energy applications
Tiny materials one hundred thousand times smaller than the width of a strand of hair could be used to improve solar cell technology. A study published this month in Advanced Materials shows that materials as small as 1.2 nanometres across could function in solar cells, which harvest energy from the sun.
Tiny materials one hundred thousand times smaller than the width of a strand of hair could be used to improve solar cell technology. A study published this month in Advanced Materials shows that materials as small as 1.2 nanometres across could function in solar cells, which harvest energy from the sun.
Next epidemic could be spotted early in wastewater, say scientists
Bath scientists worked with the water industry and UK Health Security Agency to pilot the first UK public health surveillance system that analyses wastewater. Researchers analysing wastewater say that routine monitoring at sewage treatment works could provide a powerful early warning system for the next flu or norovirus epidemic, alerting hospitals to prepare and providing public health agencies with vital health information.
Bath scientists worked with the water industry and UK Health Security Agency to pilot the first UK public health surveillance system that analyses wastewater. Researchers analysing wastewater say that routine monitoring at sewage treatment works could provide a powerful early warning system for the next flu or norovirus epidemic, alerting hospitals to prepare and providing public health agencies with vital health information.
Nanorippled graphene becomes a catalyst
A team of researchers led by Prof. Andre Geim from the National Graphene Institute (NGI) have discovered that nanoripples in graphene can make it a strong catalyst, contrary to general expectations that the carbon sheet is as chemically inert as the bulk graphite from which it is obtained. Published this week in the Proceedings of the National Academy of Sciences (PNAS), the research has shown that graphene with nanoscale corrugations of its surface can accelerate hydrogen splitting as well as the best metallic-based catalysts.
A team of researchers led by Prof. Andre Geim from the National Graphene Institute (NGI) have discovered that nanoripples in graphene can make it a strong catalyst, contrary to general expectations that the carbon sheet is as chemically inert as the bulk graphite from which it is obtained. Published this week in the Proceedings of the National Academy of Sciences (PNAS), the research has shown that graphene with nanoscale corrugations of its surface can accelerate hydrogen splitting as well as the best metallic-based catalysts.
Biochemical synthesis discovery could unlock new drug development breakthroughs
A mystery about how a chemical compound found in nature could be synthesised in the lab may have been solved, scientists say - a breakthrough which could unlock new developments in medicine. Scientists from universities and research institutions in Scotland and Germany are behind the discovery, published in the journal Nature Chemistry .
A mystery about how a chemical compound found in nature could be synthesised in the lab may have been solved, scientists say - a breakthrough which could unlock new developments in medicine. Scientists from universities and research institutions in Scotland and Germany are behind the discovery, published in the journal Nature Chemistry .
Graphene aerogel particles for efficient water purification
Writing in the Journal of Molecular Liquids , a team led by Professor Aravind Vijayaraghavan based in the National Graphene Institute (NGI) have produced 3-dimensional particles made of graphene, of many interesting shapes, using a variation of the vortex ring effect. The same effect is used to produce smoke rings and is responsible for keeping dandelion seeds flying.
Writing in the Journal of Molecular Liquids , a team led by Professor Aravind Vijayaraghavan based in the National Graphene Institute (NGI) have produced 3-dimensional particles made of graphene, of many interesting shapes, using a variation of the vortex ring effect. The same effect is used to produce smoke rings and is responsible for keeping dandelion seeds flying.
AI lights the way for futuristic electronics – from bendy TVs to lightweight solar cells
AI lights the way for futuristic electronics - from bendy TVs to lightweight solar cells Artificial intelligence (AI) is transforming modern electronics - accelerating the design of bendable TV screens, ultra-lightweight revolutionised solar cells and more. In a study published in Nature today, scientists used a type of AI algorithm to create new molecules, suited for electronics that could come straight from a sci-fi movie.
AI lights the way for futuristic electronics - from bendy TVs to lightweight solar cells Artificial intelligence (AI) is transforming modern electronics - accelerating the design of bendable TV screens, ultra-lightweight revolutionised solar cells and more. In a study published in Nature today, scientists used a type of AI algorithm to create new molecules, suited for electronics that could come straight from a sci-fi movie.
New form of ice is like a snapshot of liquid water
A collaboration between scientists at Cambridge and UCL has led to the discovery of a new form of ice that more closely resembles liquid water than any other and may hold the key to understanding this most famous of liquids. Our discovery of MDA raises many questions on the very nature of liquid water and so understanding MDA-s precise atomic structure is very important Michael Davies The new form of ice is amorphous.
A collaboration between scientists at Cambridge and UCL has led to the discovery of a new form of ice that more closely resembles liquid water than any other and may hold the key to understanding this most famous of liquids. Our discovery of MDA raises many questions on the very nature of liquid water and so understanding MDA-s precise atomic structure is very important Michael Davies The new form of ice is amorphous.
Discovery of new ice may change understanding of water
Researchers at UCL and the University of Cambridge have discovered a new type of ice that more closely resembles liquid water than any other known ices and that may rewrite our understanding of water and its many anomalies. The newly discovered ice is amorphous - that is, its molecules are in a disorganised form, not neatly ordered as they are in ordinary, crystalline ice.
Researchers at UCL and the University of Cambridge have discovered a new type of ice that more closely resembles liquid water than any other known ices and that may rewrite our understanding of water and its many anomalies. The newly discovered ice is amorphous - that is, its molecules are in a disorganised form, not neatly ordered as they are in ordinary, crystalline ice.
Space collaboration including Sussex scientist makes icy discovery which sheds light on the building blocks of life
In a development believed to shed light on the building blocks of life, an international team of scientists, including Prof Wendy Brown from the University of Sussex, has discovered diverse ices in the darkest, coldest regions of space so-far measured, which are around 500 light years from Earth. The discovery within a molecular cloud was made by scientists from the IceAge project, an international consortium of academics using the James Webb Space Telescope (JWST), to observe the building blocks of life.
In a development believed to shed light on the building blocks of life, an international team of scientists, including Prof Wendy Brown from the University of Sussex, has discovered diverse ices in the darkest, coldest regions of space so-far measured, which are around 500 light years from Earth. The discovery within a molecular cloud was made by scientists from the IceAge project, an international consortium of academics using the James Webb Space Telescope (JWST), to observe the building blocks of life.
Scientists open new window on the physics of glass formation
Research from an international team of scientists has cast new light on the physics of vitrification - the process by which glass forms. Their findings, which centre on analysis of a common feature of glasses called the boson peak, could help pave the way for new developments in materials science. The peak can be observed in glass when special equipment is used to study the vibrations of its constituent atoms, where it spikes in the terahertz range.
Research from an international team of scientists has cast new light on the physics of vitrification - the process by which glass forms. Their findings, which centre on analysis of a common feature of glasses called the boson peak, could help pave the way for new developments in materials science. The peak can be observed in glass when special equipment is used to study the vibrations of its constituent atoms, where it spikes in the terahertz range.
Researchers unravel the complex reaction pathways in zero carbon fuel synthesis
Researchers have used isotopes of carbon to trace how carbon dioxide emissions could be converted into low-carbon fuels and chemicals. The result could help the chemical industry, which is the third largest subsector in terms of direct CO2 emissions, recycle its own waste using current manufacturing processes.
Researchers have used isotopes of carbon to trace how carbon dioxide emissions could be converted into low-carbon fuels and chemicals. The result could help the chemical industry, which is the third largest subsector in terms of direct CO2 emissions, recycle its own waste using current manufacturing processes.