New resistance-busting antibiotic combination could extend the use of ’last-resort’ antibiotics

Scientists have discovered a new potential treatment that has the ability to reverse antibiotic resistance in bacteria that cause conditions such as sepsis, pneumonia, and urinary tract infections. Carbapenems, such as meropenem, are a group of vital often 'last-resort' antibiotics used to treat serious, multi-drug resistant infections when other antibiotics, such as penicillin, have failed. But some bacteria have found a way to survive treatment with carbapenems, by producing enzymes called metallo-beta-lactamases (MBLs) that break down the carbapenem antibiotics, stopping them from working. Highly collaborative research, conducted by scientists from the Ineos Oxford Institute (IOI) for Antimicrobial Research at the University of Oxford and several institutions across Europe, found that the new class of enzyme blockers, called indole carboxylates, can stop MBL resistance enzymes working leaving the antibiotic free to attack and kill bacteria such as E. coli in the lab and in infections in mice. The new research was funded by the Innovative Medicines Initiative (IMI) through the European Lead Factory (ELF) and the European Gram-Negative Antibacterial Engine (ENABLE) programmes. The researchers first screened hundreds of thousands of chemicals to see which would attach tightly to MBLs to stop them working, and which didn't react with any human proteins, leading to the discovery of the indole carboxylates as promising new candidates. Using a process called crystallography to zoom in to take a closer look at how they work, the researchers found these potential drugs attach to MBLs in a completely different way to any other drugs - they imitate the interaction of the antibiotic with the MBLs.
account creation

TO READ THIS ARTICLE, CREATE YOUR ACCOUNT

And extend your reading, free of charge and with no commitment.



Your Benefits

  • Access to all content
  • Receive newsmails for news and jobs
  • Post ads

myScience