Enabling targeted interventions to reduce the burden of mosquito-borne diseases

The global population at risk from mosquito-borne diseases - including yellow fever, Zika and dengue - is expanding with changes in the distribution of two key mosquitoes: Aedes aegypti and Aedes albopictus . The spread of these species is largely driven by a combination of factors: human movements and climate change. Now, with an unprecedented level of accuracy, an international team of researchers, led by Dr Moritz Kramer at the University of Oxford's Department of Zoology, have used statistical mapping techniques to predict where the species will spread over an immediate, medium and long-term time-scale. Published in Nature Microbiology they pinpoint this information with the precision of 5x5 km. The researchers have used 35 years of historic data, together with 17 of the highest-regarded and accepted climate change models to create a tool for public health officials which will allow them to target resource most efficiently and effectively to combat disease outbreak. Dr Moritz Kramer said: 'By combining data on the history of mosquito species spread, human population movements and climatic factors we have been able to reconstruct and predict the future of these disease-carrying mosquitoes. We hope that these high resolution maps will be used to target specific geographic areas for surveillance, control and elimination of these harmful mosquito populations.' Despite the picture they paint being not quite as bleak as previous studies have suggested, the researchers' results show that areas of particular concern are large urban areas in the southern United States and southern China.
account creation

TO READ THIS ARTICLE, CREATE YOUR ACCOUNT

And extend your reading, free of charge and with no commitment.



Your Benefits

  • Access to all content
  • Receive newsmails for news and jobs
  • Post ads

myScience