Large Hadron Collider prepares to probe more mysteries of the universe

STFC/Imperial College London
STFC/Imperial College London

The Large Hadron Collider (LHC), site of the famous 2012 discovery of the elusive Higgs boson, is due to switch back on next week.

Many Imperial College London researchers are involved in the work of the LHC. They were amongst those who designed, engineered and built the CMS detector - one of the LHC’s two main experiments - and analysed its results.

During the past two years of down-time, the LHC has been upgraded and it will now be able to smash particles together at higher energies than its previous run. The LHC will run at twice the energy of the experiments that discovered the Higgs boson, the long-hypothesized particle that gives all others mass.

The higher the energy of collision, the closer physicists can get to the conditions of the Big Bang, and they hope this will allow them to gain more insights into the workings of the universe.

Professor Jerome Gauntlett, from Imperial’s Department of Physics, said: “The stakes are high, and physicists are tremendously excited about what it will reveal. We will certainly learn more about the properties of the Higgs boson, but we may also discover new elementary particles, including particles that could comprise the mysterious dark matter that pervades the universe.”

More precise measurements of the properties of the Higgs boson will also be very interesting, and may provide answers to some deep questions about the beginning and the ultimate fate of the Universe.

Astronomical observations point to an unseen source of gravitational force in the universe, and it’s this missing component that physicists call ‘dark matter’. It is thought to make up most of the matter in the universe, but has so far been impossible to detect. However, it must have been produced at the beginning of the universe, so creating conditions similar to the Big Bang might just create dark matter too.

Several scientists at Imperial are involved in experiments at the LHC. While the Higgs boson was a large piece in the puzzle of the so-called standard model of physics, there are still many questions to be explored.

Theoretical physicist Professor Arttu Rajantie of the Department of Physics at Imperial said: “The re-start of the Large Hadron Collider takes us to exciting new territory. With the upgraded LHC, we can reach significantly higher energies, with the prospect of unexpected new discoveries. For example, the new MoEDAL experiment will be searching for magnetic monopoles, particles carrying a single magnetic pole, whose existence would shed new light on electromagnetism and the unification of forces.

“More precise measurements of the properties of the Higgs boson will also be very interesting, and may provide answers to some deep questions about the beginning and the ultimate fate of the Universe.”